András Vasy, Stanford University, Stanford, CA
+ Read more• Preface 10
• Chapter 1. Introduction 12
• Chapter 2. Where do PDE come from? 30
• Chapter 3. First order scalar semilinear equations 40
• Chapter 4. First order scalar quasilinear equations 56
• Chapter 5. Distributions and weak derivatives 66
• Chapter 6. Second order constant coefficient PDE: Types and d’Alembert’s solution of the wave equation 92
• Chapter 7. Properties of solutions of second order PDE: Propagation, energy estimates and the maximum principle 104
• Chapter 8. The Fourier transform: Basic properties, the inversion formula and the heat equation 124
• Chapter 9. The Fourier transform: Tempered distributions, the wave equation and Laplace’s equation 144
• Chapter 10. PDE and boundaries 158
• Chapter 11. Duhamel’s principle 170
• Chapter 12. Separation of variables 180
• Chapter 13. Inner product spaces, symmetric operators, orthogonality 190
• Chapter 14. Convergence of the Fourier series and the Poisson formula on disks 212
• Chapter 15. Bessel functions 232
• Chapter 16. The method of stationary phase 246
• Chapter 17. Solvability via duality 256
• Chapter 18. Variational problems 274
• Bibliography 288
• Index 290
+ Read more