Wilhelm Schlag, University of Chicago, Chicago, IL
+ Read more• Contents 4
• Preface 8
• Chapter 1. From i to z : The basics of complex analysis 18
• Chapter 2. From z to the Riemann mapping theorem: Some finer points of basic complex analysis 58
• Chapter 3. Harmonic functions 102
• Chapter 4. Riemann surfaces: Definitions, examples, basic properties 146
• Chapter 5. Analytic continuation, covering surfaces, and algebraic functions 196
• Chapter 6. Differential forms on Riemann surfaces 242
• Chapter 7. The theorems of Riemann-Roch, Abel, and Jacobi 286
• Chapter 8. Uniformization 322
• Appendix A. Review of some basic background material 370
• Bibliography 388
• Index 394
• Back Cover 402
+ Read more